207 research outputs found

    A reduced basis localized orthogonal decomposition

    Get PDF
    In this work we combine the framework of the Reduced Basis method (RB) with the framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite Element space into a low dimensional space with comparably good approximation properties and a remainder space with negligible information. The low dimensional space is spanned by locally supported basis functions associated with the node of a coarse mesh obtained by solving decoupled local problems. However, for parameter dependent multiscale problems, the local basis has to be computed repeatedly for each choice of the parameter. To overcome this issue, we propose an RB approach to compute in an "offline" stage LOD for suitable representative parameters. The online solution of the multiscale problems can then be obtained in a coarse space (thanks to the LOD decomposition) and for an arbitrary value of the parameters (thanks to a suitable "interpolation" of the selected RB). The online RB-LOD has a basis with local support and leads to sparse systems. Applications of the strategy to both linear and nonlinear problems are given

    Localized orthogonal decomposition method for the wave equation with a continuum of scales

    Get PDF
    This paper is devoted to numerical approximations for the wave equation with a multiscale character. Our approach is formulated in the framework of the Localized Orthogonal Decomposition (LOD) interpreted as a numerical homogenization with an L2L^2-projection. We derive explicit convergence rates of the method in the L∞(L2)L^{\infty}(L^2)-, W1,∞(L2)W^{1,\infty}(L^2)- and L∞(H1)L^{\infty}(H^1)-norms without any assumptions on higher order space regularity or scale-separation. The order of the convergence rates depends on further graded assumptions on the initial data. We also prove the convergence of the method in the framework of G-convergence without any structural assumptions on the initial data, i.e. without assuming that it is well-prepared. This rigorously justifies the method. Finally, the performance of the method is demonstrated in numerical experiments

    A Bayesian numerical homogenization method for elliptic multiscale inverse problems

    Get PDF
    A new strategy based on numerical homogenization and Bayesian techniques for solving multiscale inverse problems is introduced. We consider a class of elliptic problems which vary at a microscopic scale, and we aim at recovering the highly oscillatory tensor from measurements of the fine scale solution at the boundary, using a coarse model based on numerical homogenization and model order reduction. We provide a rigorous Bayesian formulation of the problem, taking into account different possibilities for the choice of the prior measure. We prove well-posedness of the effective posterior measure and, by means of G-convergence, we establish a link between the effective posterior and the fine scale model. Several numerical experiments illustrate the efficiency of the proposed scheme and confirm the theoretical findings

    Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems

    Get PDF
    This paper presents two new approaches for finding the homogenized coefficients of multiscale elliptic PDEs. Standard approaches for computing the homogenized coefficients suffer from the so-called resonance error, originating from a mismatch between the true and the computational boundary conditions. Our new methods, based on solutions of parabolic and elliptic cell-problems, result in an exponential decay of the resonance error

    A priori and a posteriori W1,∞W^{1,\infty} error analysis of a QC method for complex lattices

    Get PDF
    In this paper we prove a priori and a posteriori error estimates for a multiscale numerical method for computing equilibria of multilattices under an external force. The error estimates are derived in a W1,∞W^{1,\infty} norm in one space dimension. One of the features of our analysis is that we establish an equivalent way of formulating the coarse-grained problem which greatly simplifies derivation of the error bounds (both, a priori and a posteriori). We illustrate our error estimates with numerical experiments.Comment: 23 page

    A priori error estimates for finite element methods with numerical quadrature for nonmonotone nonlinear elliptic problems

    Get PDF
    The effect of numerical quadrature in finite element methods for solving quasilinear elliptic problems of nonmonotone type is studied. Under similar assumption on the quadrature formula as for linear problems, optimal error estimates in the L 2 and the H 1 norms are proved. The numerical solution obtained from the finite element method with quadrature formula is shown to be unique for a sufficiently fine mesh. The analysis is valid for both simplicial and rectangular finite elements of arbitrary order. Numerical experiments corroborate the theoretical convergence rate

    A probabilistic finite element method based on random meshes: Error estimators and Bayesian inverse problems

    Full text link
    We present a novel probabilistic finite element method (FEM) for the solution and uncertainty quantification of elliptic partial differential equations based on random meshes, which we call random mesh FEM (RM-FEM). Our methodology allows to introduce a probability measure on standard piecewise linear FEM. We present a posteriori error estimators based uniquely on probabilistic information. A series of numerical experiments illustrates the potential of the RM-FEM for error estimation and validates our analysis. We furthermore demonstrate how employing the RM-FEM enhances the quality of the solution of Bayesian inverse problems, thus allowing a better quantification of numerical errors in pipelines of computations
    • 

    corecore